

Synthesis and characterization of cadmiumbis (2,6-difluorobenzoate), $Cd[OCO(2,6-F_2C_6H_3)]_2$, and bis(2,6-difluorophenyl) cadmium, $Cd(2,6-F_2C_6H_3)_2$

Vasilios Padelidakis, Wieland Tyrra, Frank Conrad, Dieter Naumann *

Institut für Anorganische Chemie, Universität zu Köln, Greinstr. 6, D-50939 Cologne, Germany

Received 30 April 1998; accepted 12 June 1998

Abstract

The synthesis of Cd(2,6-F₂C₆H₃)₂ was successful via decarboxylation of the corresponding benzoate in 17% yield. The benzoate, Cd[OCO(2,6-F₂C₆H₃)]₂, was either prepared via metathesis reactions of the silver benzoate and CdCl₂ (75% yield) or by direct treatment of CdCO₃ with 2,6-difluorobenzoic acid (85% yield). © 1998 Elsevier Science S.A. All rights reserved.

Keywords: Bis(2,6-difluorobenzoate)cadmium; Bis(2,6-difluorphenyl)cadmium; Synthesis; Decarboxylation

1. Introduction

The synthesis of organomercury derivatives with fluorinated or partially fluorinated ligands by decarboxylation is a convenient synthetic approach to these compounds [1]. In cadmium chemistry this method is limited to $Cd(C_6F_5)_2$ [2]. Alternative routes for the synthesis of fluorine-containing organocadmium derivatives are ligand exchange reactions of dialkylcadmium and organoiodine derivatives [3–7] or mercury compounds [8].

Herein we describe the synthesis of $Cd(2,6-F_2C_6H_3)_2$ via decarboxylation of the corresponding benzoate.

2. Results

 $Cd[OCO(2,6-F_2C_6H_3)]_2$ was synthesized by analogy with literature procedures for $Cd[OCOC_6F_5]_2$ [9].

Method A

$$2,6-F_2C_6H_3COOH+NaOH \rightarrow Na OCO(2,6-F_2C_6H_3)$$

$$+H_2O$$

$$Na OCO(2,6-F_2C_6H_3)+AgNO_3$$

$$+I_2O \rightarrow Ag OCO(2,6-F_2C_6H_3)+NaNO_3$$

$$2 \operatorname{Ag} \operatorname{OCO}(2,6-F_2C_6H_3) + \operatorname{CdCl}_2$$

$$\rightarrow \text{Cd}[\text{OCO}(2,6-\text{F}_2\text{C}_6\text{H}_3)]_2 + 2 \text{ AgCl}$$

Method B

$$\rightarrow \text{Cd}[\text{OCO}(2,6-\text{F}_2\text{C}_6\text{H}_3)]_2 + \text{H}_2\text{O}$$

The yields were 75% (Method A) and 85% (Method B). $Cd[OCO(2,6-F_2C_6H_3)]_2$ was obtained as a colourless solid.

Decarboxylation was carried out in a round-bottom flask equipped with a water-cooled sublimation finger. At an oil bath temperature of ca. 230°C $Cd(2,6-F_2C_6H_3)_2$ is deposited on the sublimation finger as a pale yellow solid in 17% yield based on $Cd[OCO(2,6-F_2C_6H_3)]_2$.

$$Cd[OCO(2,6-F_2C_6H_3)]_2 \xrightarrow{\Delta} Cd(2,6-F_2C_6H_3)_2 + 2CO_2$$

The compound is extremely moisture sensitive and reacts with water within a few seconds to give 1,3-difluorobenzene as the only fluorine-containing product. In a sealed ampoule Cd(2,6-F₂C₆H₃)₂ melts at 205–208°C.

The reaction of $Cd(CH_3)_2$ and 1-I-2,6-F₂C₆H₃ in CH_3CN gave no spectroscopic evidence for the formation of $Cd(2,6-F_2C_6H_3)_2$ after stirring the mixture for 24 h at ambient temperature.

^{*} Corresponding author. Fax: +49-0221-470-5196.

3. Experimental

All manipulations except those in water were carried out in carefully dried vessels in a dry nitrogen atmosphere.

2,6-F₂C₆H₃COOH was purchased from ABCR, CdCO₃ from Riedel-de Haën. CdCl₂·H₂O was purchased from Riedel-de Haën and used after careful dehydration in vacuo.

NMR spectra were recorded on the Bruker spectrometer AMX 300 operating at 300.1 MHz (¹H), 282.4 MHz (¹⁹F), 75.5 MHz (¹³C) and 66.5 MHz (¹¹³Cd). Si(CH₃)₄ (¹H, ¹³C), CCl₃F (¹⁹F) and Cd(CH₃)₂ [50% in CDCl₃] (¹¹³Cd) were used as external standards.

The mass spectrum was measured with a modified Varian MAT CH5 spectrometer.

3.1. Synthesis of $Cd[OCO(2,6-F_2C_6H_3)]_2$

3.1.1. Method A

A total of 3.16 g (20 mmol) 2,6- $F_2C_6H_3$ COOH were suspended in 80 ml water and neutralized with 0.80 g (20 mmol) NaOH giving a colourless solution. 3.40 g (20 mmol) AgNO₃ dissolved in 20 ml water were added. Immediately after combining both solutions, precipitation of Ag[OCO(2,6- $F_2C_6H_3$)] began. Precipitation was complete after storing the reaction mixture for 3 h at 0°C. The solid was filtered and dried in vacuo.

Ag[OCO(2,6- $F_2C_6H_3$)] and CdCl₂ were suspended in 50 ml THF and refluxed for 2 days. After distillation of THF a grey solid remained that was washed with concentrated ammonia to remove AgCl. After drying in vacuo 3.39 g (75%) Cd[OCO(2,6- $F_2C_6H_3$)]₂ were obtained as a colourless solid.

3.1.2. Method B

A total of 7.00 g (44.3 mmol) 2,6- $F_2C_6H_3$ COOH were dissolved in 100 ml boiling water giving a pale yellow solution. 2.80 g (22.1 mmol) CdCO₃ were added in small portions until the pH became 7. The evolution of CO₂ was indicated by strong foaming. Reduction of the volume to 30 ml effected the precipitation of crystals at room temperature and below (0°C). After filtration and drying in vacuo, 8.49 g (85%) Cd[OCO(2,6- $F_2C_6H_3$)]₂ were isolated. Decomposition begins at ca. 60°C and is complete at 260°C leaving a brown solid.

Elemental analysis for $C_{14}H_6CdF_4O_4$ [found (calculated)]: Cd 26.2% (26.3%); F 17.7% (17.8%).

MS (15 eV, 200°C): 340 (97%, $[Cd(C_6H_3F_2)_2]^+$), 227 (95%, $[Cd(C_6H_3F_2)]^+$), 141 (98%, $[(C_6H_3F_2)CO]^+$); 114 (100%, $[C_6H_4F_2]^+$); 44 (71%, $[CO_2]^+$).

NMR data of Cd[OCO($2,6-F_2C_6H_3$)]₂ in CD₃CN: ¹⁹F{¹H}: δ – 112.5 ppm, s. ¹H: δ (H-4) 7.34 ppm, m, 1H; $\delta(\text{H-3,5})$ 6.94 ppm, m, 2H. ¹¹³ Cd{¹H}: δ – 792 ppm, broad. ¹³C: $\delta(CO_2)$ 168.8 ppm, s; $\delta(C-2.6)$ 159.8 ppm, dm, $^{1}J(^{19}F-^{13}C)=233$ Hz; $\delta(C-4)$ 131.2 ppm, dm, $^{1}J(^{13}C-^{1}H) = 160$ Hz, $\delta(C-1)$ 116.0 ppm, tm, $^{2}J(^{19}F-^{13}C)=21$ Hz; δ (C-3,5) 112.0 dm, ppm, ${}^{1}J({}^{13}C-{}^{1}H) = 167 \text{ Hz}.$

3.2. Synthesis of $Cd(2,6-F_2C_6H_3)_2$

In a 250-ml round-bottom flask equipped with a water-cooled sublimation finger 8.0 g (18.7 mmol) $Cd[OCO(2,6-F_2C_6H_3)]_2$ were heated in an oil bath at ca. 230°C for 6 h. CO_2 was continually pumped off. $Cd(2,6-F_2C_6H_3)_2$ condensed at the sublimation finger as small pale yellow crystals, while 1.07 g (17%) $Cd(2,6-F_2C_6H_3)_2$ were isolated; melting point: 205–208°C.

Elemental analysis for $C_{12}H_6CdF_4$ [found (calculated)]: Cd 33.8% (33.2%); F 20.1% (22.4%).

MS (15 eV, 80°C): 340 (95%, $[Cd(C_6H_3F_2)_2]^+$), 227 (15%, $[Cd(C_6H_3F_2)]^+$), 114 (100%, $[C_6H_4F_2]^+$).

NMR data of Cd(2,6-F₂C₆H₃)₂ in CDCl₃: ¹⁹F{¹H}: δ – 84.9 ppm, s, ³J(^{111/113}Cd–¹⁹F) ≈ 71 Hz. ¹H: δ (H-4) 7.27 ppm, m, 1H; δ (H-3,5) 6.88 ppm, m, 2H. ¹¹³Cd{¹H}: δ – 240 ppm, broad; δ – 225 ppm, broad in CH₃CN. ¹³C: δ (C-2,6) 167.5 ppm, dm, ¹J(¹⁹F–¹³C) = 224 Hz; δ (C-4) 131.8 ppm, dm, ¹J(¹³C–¹H) = 164 Hz, δ (C-1) 122.8 ppm, m; δ (C-3,5) 110.3 ppm, ddm, ¹J(¹³C–¹H) = 170 Hz, ²J(¹⁹F–¹³C) = 29 Hz.

Acknowledgements

Support by the Fonds der Chemischen Industrie is gratefully acknowledged.

References

- [1] N.J. Barassi, G.B. Deacon, J.A. Weigold, Z. Anorg. Allg. Chem. 620 (1994) 993 and literature cited therein.
- [2] M. Schmeißer, M. Weidenbruch, Chem. Ber. 100 (1967) 2306.
- [3] H. Lange, D. Naumann, J. Fluorine Chem. 26 (1984) 1.
- [4] D. Naumann, K. Glinka, W. Tyrra, Z. Anorg. Allg. Chem. 594 (1991) 95.
- [5] H. Lange, D. Naumann, J. Fluorine Chem. 41 (1988) 185.
- [6] R. Eujen, B. Hoge, J. Organomet. Chem. 503 (1995) C51.
- [7] R. Eujen, B. Hoge, D.J. Brauer, J. Organomet. Chem. 519 (1996) 7.
- [8] L.J. Krause, J.A. Morrison, J. Am. Chem. Soc. 103 (1981) 2995.
- [9] P. Sartori, M. Weidenbruch, Chem. Ber. 100 (1967) 2016.